
Package index
-
empirical_power_result() - Create an Empirical Power Result object
-
format(<power_single_rate>) - Format method for power_single_rate class
-
is.empirical_power_result() - Check if an object is a sim_power_result
-
multp() - Calculate the Multivariate Normal Probability
-
multz() - Calculate the Upper Equicoordinate Point of a Multivariate Normal Distribution
-
power_best_binomial() - Power to Correctly Select the Best Group in a Binomial Test
-
power_best_normal() - Power calculation for the Indifferent-zone approach for normal outcomes
-
power_single_rate() - Detectable Event Rate with Specified Power and Sample Size
-
print(<empirical_power_result>) - Print method for empirical_power_result
-
print(<power_single_rate>) - Print method for class power_single_rate
-
prophr() - Calculate Event Probability in the Experimental Group Given a Hazard Ratio
-
sim_power_best_bin_rank() - Simulate Power to Rank the Best Group Using Binomial Outcomes
-
sim_power_best_binomial() - Simulate Power to Select the Best Group Using Binomial Outcomes
-
sim_power_best_norm_rank() - Simulate Power to Select Best Group by Ranks (Normal Outcomes)
-
sim_power_best_normal() - Simulate Power to Select Best Group (Normal Outcomes)
-
sim_power_equivalence_normal() - Empirical Power for Equivalence (Normal Outcomes)
-
sim_power_nbinom() - Empirical Power for Negative Binomial Comparison
-
sim_power_ni_normal() - Empirical Power for Non-Inferiority (Normal Outcomes)
-
ss_best_binomial() - Sample Size to Select the Best Group in a Binomial Test
-
ss_best_normal() - Sample Size for Selecting the Best Treatment in a Normal Response (Indifference-Zone)
-
ss_ni_ve() - Sample Size and Non-Inferiority Margin for Vaccine Efficacy Trials
-
tidy(<empirical_power_result>) - Tidy Method for empirical_power_result
-
wcs_power_best_binomial() - Worst‐Case Scenario Power for the Best Binomial Group